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Motivation Latent heat and nucleus growth

For a first order phase transition the change of phase is accompanied by
liquid crystals the radius of a nematic domain grows release or uptake of latent heat. The diffusion of latent heat away from the

as R ¢, where n has been found'? to depend on growing nucleus may explain the I? o ¢ /2 growth for low undercooling.
the undercooling AT=T-T., where T. is the mumm Methods - 2
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* The radius grows as R _ ¢! for high undercooling. 1 (2) % N SN [ E 02

* n(AT) resembles an as a function of AT 2p ot 2 00
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equation for the evolution of the order &
RIGHT: Nematic germs of PCH5 growing out of the

) | ®  experiment I isotropic phase. In the lower right corner of each paramEter f|€|d baSEd on the free energy. ” 10
picture the time (in seconds and milliseconds) after . . - '
the ’_[emperature quench is given. The undercooling % (2) Heat dlfoS|On equatlon (U:Cp(T‘Tc)/L) 02 04 06 08 10 12 00 10 20 30 40 50
AT is 0.15K, s "8 S » with the change in the order parameter as R(104) R(10°)

Figure and caption adapted from ref. 1

| ; LEFT: For undercooling -1<Au<0 the latent heat
LEFT: Experimentally determined growth exponent n the latent heat source. warms up the interface to near the coexistence
as a function of undercooling AT. Errors are in the L S temperature u=0. The growth is limited by thermal

order of the size of the symbols. The data confirm the We solve Eq _ (1) analytica”y4,5_ We inte- difiusion, and therefore R will eventually grow as
theoretically predicted change of n=1/2 for AT=0 K to Roc t1/2

quench rate 3 K min - n—1 for large quench depths. grate Eq (2) numerica”y in spherica| COOr- RIGHT: For undercooling Au<-1 the temperature at

o wE  wa @ e Figure and caption adapted from ref. 2 the front approaches a finite value u=Au+1, and

AT(K) dinates, using the solution to Eq. (1) . domains wil grow as o< t'

* In the 1St order isotropic to nematic transition of

order parameter: m

Radius of the growing nucleus Exponent of growth

* By fitting KR o t* for different time intervals we study the time
dependence of the growth exponent as a function of undercooling.

* The growth exponent follows an S-curve that sharpens with time.

* The curvature of the nucleus increases n for low undercooling.

* Effect of this curvature diminishes with time as nucleus size
Increases.

BOTTOM: Radius R-R, (in dimensionless units) of a growing nucleus in one, two and three dimensions for different values of the BOTTOM: Exponent of growth as a function of undercooling for 3 time intervals blue: 1=104-105, red r=105-106, black
undercooling Au. Parameters used: §=0.1, p=0.033. The liquid crystal 8CB is best described by 5=1.4, p=3.4:1075. =106 -107, green: asymptotic curve. Same data as depicted in the figure to the left of this figure.
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Here we show the radius R(¢) of a growing nucleus, found by
integrating Egs. (1) and (2) for different values of the undercooling
temperature Au in 1D, 2D and 3D. Note that R(¢) can be described by
a power law only for long times. Also note that for high undercooling

the growth equals R « ¢! and for low undercoolings R o t1/2.
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Multiple time / length scales: scaling? Applicability to Conclusions
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arameter »in £q, (1) is very small (10 4| OO liquid crystals 0 o eavor "
p . : -0.01} . .

* The temperature profile is much wider =-%% , ' * The undercooling temperature R #1/2 due to the diffusion of

than the order parameter profile. We would = .oc| : T'-Licp separating n=1/2 and n=1  |atent heat.

need in the order of 10° grid points and é:°-°5' ' IS in the range of liquid crystal . For high undercooling T<T-Llc

integration over 10'° integration steps. ool : (LC) nucleus growth. ~ the asymptotic behavior is R  t!.
* Although the latent heat is . pgaocguse the time at which

* In one dimension the growth velocity of -oos - _ _ |
the nucleus is proportional to the ~7 107 10° quite low in LC's, the thermal  Joumntotic behavior is reached

. t(s) I /I I .
undercooling temperature u(R(¢)) at the +op. Temperature at the front u(R(1) estimated _d';fUT:'V'tY IS aI_so Very |0V\I’- | depends on the undercooling,
nucleus front R() and u(R(r)) scales by rescing simulations with different values of p urface tension is very low: experimentally an S-curve is

(from p=10"° to p=0.1) for a realistic value of

approximately with the parameter p in 1D, $-k# A«=-0.Lin 1D. In 1D the growth velocty S-curve will resemble the 1D maqgyred. Asymptotic behavior may
* By integrating Egs. (1) and (2) for a wide simulation result. never be reached because nuclei
range of parameters p and rescaling the results, we can estimate u(R(?)) f The p p_aralnfneser |st_too S”?a” start to coalesce.
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